Neonatal lung side population cells demonstrate endothelial potential and are altered in response to hyperoxia-induced lung simplification.

نویسندگان

  • D Irwin
  • K Helm
  • N Campbell
  • M Imamura
  • K Fagan
  • J Harral
  • M Carr
  • K A Young
  • D Klemm
  • S Gebb
  • E C Dempsey
  • J West
  • S Majka
چکیده

Lung side population (SP) cells are resident lung precursor cells with both epithelial and mesenchymal potential that are believed to play a role in normal lung development and repair. Neonatal hyperoxic exposure impairs lung development leading to a long-term decrease in gas exchange surfaces. The hypothesis that lung SP cells are altered during impaired lung development has not been studied. To address this issue, we characterized the endothelial potential of neonatal lung SP and subsets of lung SP from neonatal mice following hyperoxic exposure during room air recovery. Lung SP cells were isolated and sorted on the basis of their capacity to efflux Hoechst 33342. The lung SP was further sorted based on expression of Flk-1 and CD45. In vitro, both CD45(pos)/Flk-1(pos) and CD45(neg)/Flk-1(pos) bind isolectin B4 and incorporate LDL and form networks in matrigel, indicating that these populations have endothelial cell characteristics. Hyperoxic exposure of neonatal mice resulted in subtle changes in vascular and alveolar density on P13, which persisted with room air recovery to P41. During room air recovery, a decrease in lung SP cells was detected in the hyperoxic-exposed group on postnatal day 13 followed by an increase on day 41. Within this group, the lung SP subpopulation of cells expressing CD45 increased on day 21, 41, and 55. Here, we show that lung SP cells demonstrate endothelial potential and that the population distribution changes in number as well as composition following hyperoxic exposure. The hyperoxia-induced changes in lung SP cells may limit their ability to effectively contribute to tissue morphogenesis during room air recovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of inflammatory cell trafficking and alveolar simplification by the heme oxygenase-1 product carbon monoxide.

Bronchopulmonary dysplasia (BPD), a lung disease of prematurely born infants, is characterized in part by arrested development of pulmonary alveolae. We hypothesized that heme oxygenase (HO-1) and its byproduct carbon monoxide (CO), which are thought to be cytoprotective against redox stress, mitigate lung injury and alveolar simplification in hyperoxia-exposed neonatal mice, a model of BPD. Th...

متن کامل

Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats

Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI).   Materials ...

متن کامل

Fresh Noncultured Endothelial Progenitor Cells Improve Neonatal Lung Hyperoxia‐Induced Alveolar Injury

Treatment of preterm human infants with high oxygen can result in disrupted lung alveolar and vascular development. Local or systemic administration of endothelial progenitor cells (EPCs) is reported to remedy such disruption in animal models. In this study, the effects of both fresh (enriched for KDR) and cultured bone marrow (BM)-derived cell populations with EPC characteristics were examined...

متن کامل

Knockdown of ERp57 increases BiP/GRP78 induction and protects against hyperoxia and tunicamycin-induced apoptosis.

Supplemental oxygen therapy (hyperoxia) in preterm babies with respiratory stress is associated with lung injury and the development of bronchopulmonary dysplasia. Endoplasmic reticulum (ER) homeostasis plays critical roles in maintaining cellular functions such as protein synthesis, folding, and secretion. Interruption of ER homeostasis causes ER stress and triggers the unfolded protein respon...

متن کامل

Epidermal growth factor-like domain 7 protects endothelial cells from hyperoxia-induced cell death.

Hyperoxia is one of the major contributors to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease in premature infants. Emerging evidence suggests that the arrested lung development of BPD is associated with pulmonary endothelial cell death and vascular dysfunction resulting from hyperoxia-induced lung injury. A better understanding of the mechanism of hyperoxia-induced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 293 4  شماره 

صفحات  -

تاریخ انتشار 2007